5,759 research outputs found

    Culture-specific programs for children and adults from minority groups who have asthma (Review)

    Get PDF
    Background People with asthma who come from minority groups have poorer asthma outcomes and more asthma related visits to Emergency Departments (ED). Various programmes are used to educate and empower people with asthma and these have previously been shown to improve certain asthma outcomes. Models of care for chronic diseases in minority groups usually include a focus of the cultural context of the individual and not just the symptoms of the disease. Therefore, questions about whether culturally specific asthma education programmes for people from minority groups are effective at improving asthma outcomes, are feasible and are cost-effective need to be answered. Objectives To determine whether culture-specific asthma programmes, in comparison to generic asthma education programmes or usual care, improve asthma related outcomes in children and adults with asthma who belong to minority groups. Search strategy We searched the Cochrane Register of Controlled Trials (CENTRAL), the Cochrane Airways Group Specialised Register, MEDLINE, EMBASE, review articles and reference lists of relevant articles. The latest search was performed in May 2008. Selection criteria All randomised controlled trials (RCTs) comparing the use of culture-specific asthma education programmes with generic asthma education programmes, or usual care, in adults or children from minority groups who suffer from asthma. Data collection and analysis Two review authors independently selected, extracted and assessed the data for inclusion. We contacted authors for further information if required. Main results Four studies were eligible for inclusion in the review. A total of 617 patients, aged from 5 to 59 years were included in the meta-analysis of data. Use of a culture-specific programme was superior to generic programmes or usual care, in improving asthma quality of life scores in adults, pooled WMD 0.25 (95% CI 0.09 to 0.41), asthma knowledge scores in children, WMD 3.30 (95% CI 1.07 to 5.53), and in a single study, reducing asthma exacerbation in children (risk ratio for hospitalisations 0.32, 95% CI 0.15, 0.70). Authors' conclusions Current limited data show that culture-specific programmes for adults and children from minority groups with asthma, are more effective than generic programmes in improving most (quality of life, asthma knowledge, asthma exacerbations, asthma control) but not all asthma outcomes. This evidence is limited by the small number of included studies and the lack of reported outcomes. Further trials are required to answer this question conclusively

    The effect of Me2_{2}SO overexposure during cryopreservation on HOS TE85 and hMSC viability, growth and quality

    Get PDF
    With the cell therapy industry continuing to grow, the ability to preserve clinical grade cells, including mesenchymal stem cells (MSCs), whilst retaining cell viability and function remains critical for the generation of off-the-shelf therapies. Cryopreservation of MSCs, using slow freezing, is an established process at lab scale. However, the cytotoxicity of cryoprotectants, like Me2_{2}SO, raises questions about the impact of prolonged cell exposure to cryoprotectant at temperatures >0 °C during processing of large cell batches for allogenic therapies prior to rapid cooling in a controlled rate freezer or in the clinic prior to administration. Here we show that exposure of human bone marrow derived MSCs to Me2_{2}SO for ≥1 h before freezing, or after thawing, degrades membrane integrity, short-term cell attachment efficiency and alters cell immunophenotype. After 2 h's exposure to Me2_{2}SO at 37 °C post-thaw, membrane integrity dropped to ∼70% and only ∼50% of cells retained the ability to adhere to tissue culture plastic. Furthermore, only 70% of the recovered MSCs retained an immunophenotype consistent with the ISCT minimal criteria after exposure. We also saw a similar loss of membrane integrity and attachment efficiency after exposing osteoblast (HOS TE85) cells to Me2_{2}SO before, and after, cryopreservation. Overall, these results show that freezing medium exposure is a critical determinant of product quality as process scale increases. Defining and reporting cell sensitivity to freezing medium exposure, both before and after cryopreservation, enables a fair judgement of how scalable a particular cryopreservation process can be, and consequently whether the therapy has commercial feasibility.The authors would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC; UK, EP/F500491/1) and Bioprocessing Research Industry Club (BBSRC/BRIC; UK, BB/I017602/1) for their support and funding

    UBE2QL1 is Disrupted by a Constitutional Translocation Associated with Renal Tumor Predisposition and is a Novel Candidate Renal Tumor Suppressor Gene

    Get PDF
    Investigation of rare familial forms of renal cell carcinoma (RCC) has led to the identification of genes such as VHL and MET that are also implicated in the pathogenesis of sporadic RCC. In order to identify a novel candidate renal tumor suppressor gene, we characterized the breakpoints of a constitutional balanced translocation, t(5;19)(p15.3;q12), associated with familial RCC and found that a previously uncharacterized gene UBE2QL1 was disrupted by the chromosome 5 breakpoint. UBE2QL1 mRNA expression was downregulated in 78.6% of sporadic RCC and, although no intragenic mutations were detected, gene deletions and promoter region hypermethylation were detected in 17.3% and 20.3%, respectively, of sporadic RCC. Reexpression of UBE2QL1 in a deficient RCC cell line suppressed anchorage-independent growth. UBE2QL1 shows homology to the E2 class of ubiquitin conjugating enzymes and we found that (1) UBE2QL1 possesses an active-site cysteine (C88) that is monoubiquitinated in vivo, and (2) UBE2QL1 interacts with FBXW7 (an F box protein providing substrate recognition to the SCF E3 ubiquitin ligase) and facilitates the degradation of the known FBXW7 targets, CCNE1 and mTOR. These findings suggest UBE2QL1 as a novel candidate renal tumor suppressor gen

    Weighted-norm preconditioners for a multilayer tide model

    Get PDF
    We derive a linearized rotating shallow water system modeling tides, which can be discretized by mixed finite elements. Unlike previous models, this model allows for multiple layers stratified by density. Like the single-layer case [R. C. Kirby and T. Kernell, Comput. Math. Appl., 82 (2021), pp. 212–227], a weighted-norm preconditioner gives a (nearly) parameter-robust method for solving the resulting linear system at each time step, but the all-to-all coupling between the layers in the model poses a significant challenge to efficiency. Neglecting the inter-layer coupling gives a preconditioner that degrades rapidly as the number of layers increases. By a careful analysis of the matrix that couples the layers, we derive a robust method that requires solving a reformulated system that only involves coupling between adjacent layers. Numerical results obtained using Firedrake [F. Rathgeber et al., ACM Trans. Math. Software, 43 (2016), 24] confirm the theory

    Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy.

    Get PDF
    Nano-structured silicon anodes are attractive alternatives to graphitic carbons in rechargeable Li-ion batteries, owing to their extremely high capacities. Despite their advantages, numerous issues remain to be addressed, the most basic being to understand the complex kinetics and thermodynamics that control the reactions and structural rearrangements. Elucidating this necessitates real-time in situ metrologies, which are highly challenging, if the whole electrode structure is studied at an atomistic level for multiple cycles under realistic cycling conditions. Here we report that Si nanowires grown on a conducting carbon-fibre support provide a robust model battery system that can be studied by (7)Li in situ NMR spectroscopy. The method allows the (de)alloying reactions of the amorphous silicides to be followed in the 2nd cycle and beyond. In combination with density-functional theory calculations, the results provide insight into the amorphous and amorphous-to-crystalline lithium-silicide transformations, particularly those at low voltages, which are highly relevant to practical cycling strategies.K.O acknowledges a research fellowship from Japanese Society for the Promotion of Science (JSPS). E.S acknowledges support by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme and thanks Churchill College (Cambridge, UK) for a non-stipendiary Raymond and Beverly Sackler Research fellowship. C.J.K and A.E.F acknowledge a research studentship from the Cambridge Nano Science and Technology Doctoral Training Centre (NanoDTC). A.J.M acknowledges the support from the Winton Programme for the Physics of Sustainability. S.H acknowledges funding from ERC grant InsituNANO (project number 279342). C.P.G and C.D thank the Royal Society, and C.P.G thanks European Research Council (ERC). C.P.G. acknowledges support from the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy, under Contract DE-AC02-05CH11231, subcontract 6952000.This is the accepted manuscript. The final version is available from Nature Communications at http://www.nature.com/ncomms/2014/140203/ncomms4217/full/ncomms4217.html

    Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting

    Get PDF
    The Oman ophiolite provides a natural laboratory for understanding oceanic lithospheric processes. Previous paleomagnetic and structural investigations have been used to support a model involving rotation of the ophiolite during formation at a mid-oceanic microplate. However, recent geochemical evidence indicates the ophiolite instead formed in a nascent forearc environment, opening the potential for alternative rotation mechanisms. Central to the conundrum is the contrast between ESE to SE magnetizations and NNW magnetizations from the northern and southern ophiolitic massifs respectively, attributed previously to either differential tectonic rotations during spreading or complete emplacement-related remagnetization of the southern massifs. Here we report new paleomagnetic data from lower crustal rocks of the southern massifs that resolve this problem. Sampling of a continuous section in Wadi Abyad reveals ENE magnetizations in the dike rooting zone at the top of the lower crust that change systematically downwards to NNW directions in underlying foliated and layered gabbros. This is only consistent with remagnetization from the base upwards, replacing early remanences in layered and foliated gabbros completely but preserving original ENE magnetizations at higher levels. Comparison with new data from Wadi Khafifah provides a positive fold test that shows this event occurred before late Campanian structural disruption of the regional orientation of the petrologic Moho. These data show that the entire ophiolite experienced large intraoceanic clockwise rotation prior to partial remagnetization, leading to a new tectonic model in which formation, rotation and emplacement of the ophiolite are all linked to Late Cretaceous motion of Arabia and roll-back of the Oman subduction zone

    Recognizing detachment-mode seafloor spreading in the deep geological past.

    Get PDF
    Large-offset oceanic detachment faults are a characteristic of slow- and ultraslow-spreading ridges, leading to the formation of oceanic core complexes (OCCs) that expose upper mantle and lower crustal rocks on the seafloor. The lithospheric extension accommodated by these structures is now recognized as a fundamentally distinct “detachment-mode” of seafloor spreading compared to classical magmatic accretion. Here we demonstrate a paleomagnetic methodology that allows unequivocal recognition of detachment-mode seafloor spreading in ancient ophiolites and apply this to a potential Jurassic detachment fault system in the Mirdita ophiolite (Albania). We show that footwall and hanging wall blocks either side of an inferred detachment have significantly different magnetizations that can only be explained by relative rotation during seafloor spreading. The style of rotation is shown to be identical to rolling hinge footwall rotation documented recently in OCCs in the Atlantic, confirming that detachment-mode spreading operated at least as far back as the Jurassic
    corecore